CLARIN-D AP3 report: establishing the technical infrastructure
May 2012 – April 2013

May 2013
1 Introduction.. 4

2 AG 1: Repositories .. 4
 2.1 Setup of Repositories... 4
 2.2 Center Assessment.. 4

3 AG 2: Persistent Identifiers (PID).. 5

4 AG 3: Registries.. 5
 4.1 Center Registry... 5
 4.2 Data Category Registry.. 6
 4.3 Relation Registry.. 7
 4.4 Schema Registry.. 7

5 AG 4: CMDI .. 8
 5.1 CMDI core schema... 8
 5.2 Arbil... 8
 5.3 Component Registry... 9
 5.4 OAI Harvester... 9
 5.5 Virtual Language Observatory.. 10

6 AG 5: Authentication & Authorization Infrastructure.. 10
 6.1 Testing.. 10
 6.2 CLARIN IdP... 11
 6.3 CLARIN Discovery Service... 11
 6.4 Web service authentication.. 11

7 AG 6: Workspaces and Hosting... 11
 7.1 Workspaces.. 11
 7.2 Hosting... 12

8 AG 7: Web services, Generic services.. 13
 8.1 Web services.. 13
 8.2 Generic Services.. 13

9 AG 8: Simple store... 13

10 AG 9: Monitoring... 14

11 AG 10: Federated Content Search.. 15

12 AG 11: Replication.. 15
 12.1 Logical replication.. 15
 12.2 SAM-FS integration.. 16

13 Summary ... 17
1 Introduction

As most of the work in the technical infrastructure work package has been done within specialized working groups, we list all of these below and describe in detail which activities have been undertaken. Note that rather than include long descriptive texts, we have tried to link to “living” documents or web sites (in the spirit of CLARIN) as much as possible, resulting in a more up-to-date overview.

2 AG 1: Repositories

2.1 Setup of Repositories

As one of the important pillars of the distributed CLARIN-infrastructure, each of the centers sets up a repository to store the resources they are hosting in a standardized and sustainable way. This process includes the creation (and possibly conversion) of metadata and persistent identifiers.

In the course of CLARIN-D’s first year, all nine center candidates have each made serious efforts to establish a repository. After a workshop devoted to this subject (http://www.clarin.eu/events/3443) and some internal discussions, most (7 out of 9) centers have selected Fedora Commons (http://www.fedora-commons.org) as a repository system, often with PrOAI (http://proai.sourceforge.net/) as a module to export the metadata via OAI-PMH.

Two centers with a longer archiving tradition – BAS and the MPI – did not choose Fedora. The MPI continues to use its self-built IMDI & Lamus repository system, extending it to support CMDI. BAS initially experimented with Fedora but decided in the end that it was too heavy weight for its purposes and set up a self-developed system.

In the second project year, the repository infrastructure in all centers was strengthened and became more integrated into the CLARIN-D infrastructure, as is also visible by the center assessment process (see next point).

2.2 Center Assessment

An important part of acquiring the official CLARIN center status is to be assessed. All 9 CLARIN-D centers are taking part in 2 assessment procedures:

- By the CLARIN center assessment committee (see http://www.clarin.eu/sc-centers), which analyzes the center’s offer in terms of compliancy with the B center requirements. All 9 centers are aiming for the B status; most, in particular MPI, IDS and Tübingen University, are also offering A-services in addition to that. It is the first time that this assessment takes place; hence quite some interaction is necessary to clarify certain points with the center representatives.

- By the Data Seal of Approval committee (http://www.datasealofapproval.org/), which is an independent body that checks whether a center’s data management strategy and its policy are suitable for long-term archiving.

By February 2013, all CLARIN-D centers submitted the documents needed to be assessed by both bodies. Authoring these documents was for all of the centers a good incentive to reconsider and to update their long-term archiving and service policies.
The results of the assessments are expected by the end of May 2013.

3 AG 2: Persistent Identifiers (PID)

To ensure the stability of scientific citations of language resources and the associated metadata descriptions, CLARIN relies on the use of Persistent Identifiers. By adding a level of indirection when resolving an identifier towards an URL, the long-term stability of the references can be guaranteed. However, this approach needs some reliable components to be in place. Therefore the PID workgroup has undertaken the following activities:

Integrate handles in the center repositories

All CLARIN-D centers have developed a PID strategy. Most of them are or will be connected to the EPIC service to acquire and manage handle PIDs. The BBAW currently has URN:NBNs in place but is about to issue handles. The MPI and IDS do not plan to use EPIC – they have their own prefix and handle server.

Setting up and testing part identifiers

For the citation of fragments of resources there is a 2-step resolving procedure, compatible with the ISO draft on part identifiers (see http://www.clarin.eu/node/269), which has been implemented by the EPIC consortium. Details about the use of part identifiers in the CLARIN-D context can be found at:

http://www.clarin.eu/node/3453

Training course on the use of EPIC services

On September 8, 2011, a tutorial about PIDs and the EPIC service was organized at the MPI for the CLARIN-D centers: http://www.clarin.eu/events/3443

A similar workshop, in cooperation with EUDAT, and – next to EPIC – also focusing on the DataCite handle service took place in June 2012: http://www.eudat.eu/1st-training-days-presentations

4 AG 3: Registries

4.1 Center Registry

As accessing resources and endpoints (SRU for content searches, OAI-PMH for metadata harvesting, etc.) in a distributed setup requires an up-to-date list of addresses, it is clear that CLARIN needs a machine-readable registry where such pointers can be stored and accessed. Additionally, the need for a list of centers, with e.g. contact information (for technical or administrative questions) resulted in the concept of a center registry. The requirements for this web-accessible center database are outlined in document CLARIND-AP3-001 (see http://www.clarin.eu/specification-documents) and were used by the RZG computing center as the basis for an implementation (see http://centerregistry-clarin.esc.rzg.mpg.de). At the moment of writing a production version of the center registry is available, both for human and programmatic access (via a web site and a REST interface, respectively). It is filled with information about the CLARIN-D centers and will be extended with the other centers in other countries.
4.2 Data Category Registry

ISOcat (http://www.isocat.org/) was stable and intensively used during the last year (between 500 and 1000 daily DC requests, more than 5000 DC in the registry, both growing). Still the registry has been further improved especially to support the CLARIN community and to embed the system in the infrastructure. Improvements include:

- The Private profile has been split into profiles, undecided and not available, which makes their purpose more clear;
- The chair of groups, like CLARIN-NL/VL, can recommend data categories, which helps users to select data categories that are mature and have been (peer) reviewed;
- Access levels to data categories and selections have been refined so it also possible to share them read-only;
- Full support for Shibboleth-based access by binding a local ISOcat account to a Shibboleth principal;
- Experimental support for Shibboleth authentication delegation to the web services via OAuth 2 security tokens;
- Experimental support for a CLAVAS SKOS export.

Publications

S.E. Wright, M. Windhouwer. ISOcat - im Reich der Datenkategorien. In the special issue on Datenkategorien in der Terminologie of eDITion - Fachzeitschrift für Terminology, 1/2013, pp. 8-12, February 2013. (German translation thanks to D. Reineke)

Tutorials

M. Windhouwer. ISOcat introduction and hands-on session. Data category standards in language technology research infrastructure. Workshop sponsored by Australian National Data Service, hosted by the Australian Reference Group for Interoperability in Language Resources and the University of Sydney Library. Sydney, Australia, April 23-24, 2013. (Forthcoming)

4.3 Relation Registry

The alpha version of RELcat is available at http://lux13.mpi.nl/relcat/. Since the start of 2013 development work has started on the beta version, which will allow users to create and maintain their own relation sets.

Publications

4.4 Schema Registry

The alpha version of SCHEMAcat is available at http://lux13.mpi.nl/schemacat/. Since the start of 2013 development work has started on the beta version, which will allow users to browse the registry and upload their own schemas.
5 AG 4: CMDI

The Component Metadata framework forms the base of metadata modeling in CLARIN. As the work done in this workgroup was spread across several subgroups, we mention the activities here as subsections. In general, detailed information and links to the software mentioned can be found at http://www.clarin.eu/cmdi.

5.1 CMDI core schema

At the backend of CMDI the following changes took place:

• Addition of extra schematron checks
• All profiles and components have been checked and unused ones were removed after discussing this with the respective owners
• Replacement of some proprietary XSLT extensions by standard XSLT v2 elements
• Initial proposals have been made to implement a basic versioning mechanism for components/profiles and CMDI instances (currently at the CLARIN developers wiki, soon to be released as an official specification document)
• An initial draft (see CLARIND-AP3-007 at http://www.clarin.eu/specification-documents) was drafted regarding common issues when modeling metadata (granularity, hierarchies, cycles in metadata instances, etc.)

5.2 Arbil

A new version of the Arbil desktop metadata editor (http://tla.mpi.nl/tools/tla-tools/arbil) has been released with improved handling of CMDI and a better user experience for CMDI users (Arbil also supports the IMDI metadata standard). The changes include:

• Arbil has been made compatible with the latest version of the CMDI specification. It allows the user to read, create and edit all specified components and elements, attributes on both components and elements, and deal with controlled vocabularies, resource proxies, data categories and display priority.
• A checkbox has been added to the profiles dialog that toggles filtering of all available CMDI profiles, so that only the ones selected for metadata editing in the Component Registry are displayed
• Descriptions contained in ISOcat data category definitions are now used by Arbil as field descriptions in instances where no explicit field documentation is provided
• A wizard has been added that guides the user through the process of choosing a metadata format and selecting profiles

• Improved editing modes, local search and tree representation

5.3 Component Registry

The component registry, browser and editor (altogether commonly referred to as 'Component Registry') allows metadata modelers to create, edit and store CMDI profiles and makes published profiles available through a public REST interface and a user-friendly web application on top of this service. Over the past year, a substantial number of improvements and new features have been implemented and released to the server (http://catalog.clarin.eu/ds/ComponentRegistry/). Changes include:

• The backend has been re-implemented to use a relational database instead of file system storage

• Attributes can be added and edited on components.

• Concept links (data categories) can be assigned to components and attributes of components and elements

• Private components can be edited if they are used in other components, a warning message is shown in Flex UI

• Validation of component specifications (upon import/editing) now also supports Schematron rules in the general component schema

• Client side validation while editing has been extended

• Comments can be posted on profiles and components

• Recursion detection with respect to components takes place at every component/profile registration or update

• Users can set their display name through a web form linked from the Flex UI

• Components and Profiles can be monitored via an RSS feed

5.4 OAI Harvester

The application that is responsible for the harvesting of metadata records from the OAI providers has been significantly improved over the last year. These changes include:

• The implementation of a web-GUI to inspect the harvested metadata files for each center: http://catalog.clarin.eu/oai-harvester/

• The creation of a regularly downloadable set of metadata files (for consumption by e.g. other search engines): http://catalog.clarin.eu/oai-harvester/resultsets/

• A flexible mapping (for OLAC files) from the OAI identifier to a MdCollectionDisplayName, which results in clear collection names in the VLO.
• The code has been completely revisited and made far more robust.

• The configuration of the harvester has been streamlined.

5.5 Virtual Language Observatory

The VLO is the low-barrier end-user metadata portal, bringing together all CMDI metadata records within a facet browser. Significant improvements that have been added in this first year of CLARIN-D are:

• The addition of a “national project” facet, giving the user the possibility to explore, e.g., all the resources within CLARIN-D (http://catalog.clarin.eu/ds/vlo/?fq=nationalProject:CLARIN-D)

• Links to a Language information page (e.g. http://www.clarin.eu/external/language.php?code=deu)

• The conversion script that creates CMDI instances for the records of the CLARIN LRT inventory was extended and updated.

• The backend of the VLO has been re-engineered to ensure easy deployment of new versions and easier debugging (e.g. moved from ad-hoc configuration scripts to maven and standardized configuration files).

• A link was implemented between the VLO and the Federated Content Search aggregator, making it possible to perform a content search within a set of resources that was first identified with the facet browser.

• A feedback button and web form has been setup, to stimulate users to report metadata anomalies.

An extensive description of the technology and workflow of the VLO can be found at:

http://pubman.mpdl.mpg.de/pubman/item/escidoc:1454694:6

6 AG 5: Authentication & Authorization Infrastructure

In the CLARIN preparatory phase, the so-called Service Provider Federation (http://www.clarin.eu/spf) was initiated, cross-connecting Identity and Service Providers from Germany, the Netherlands and Finland. Although this experience was a significant step forward, it was clear that additional steps were necessary to advance the SPF to a state where it can be used as the basis for daily work. In CLARIN-D such steps forward were made, as described in detail in the subsections below.

6.1 Testing

To check if Service Providers are receiving some important attributes (user name, email address, etc.) from the German Identity Providers, the CLARIN-D centers started checking mutual connections between IdPs and SPs. This lead to the (worrisome) conclusion that a significant portion of the IdPs in the DFN-AAI federation do not release enough information to ensure a well-functioning setup. As a (hopefully temporary) alternative, the CLARIN IdP (see below) was launched. At the same time, CLARIN-D and DARIAH-DE released a call for action to the German Identity Providers and the DFN-AAI, stressing the importance of releasing personal attributes to trustworthy academic SPs:
6.2 CLARIN IdP

To provide users without a functioning IdP (or one that does not release necessary attributes, like eduPersonPrincipalName) with a fallback-system to log in to CLARIN SPs, the CLARIN IdP was developed. More details about this can be found at:

http://www.clarin.eu/page/3398

In addition to this, the requirements from some of the major resource providers (BBAW and IDS) were analyzed to find out how strict the procedure to allow new users to the CLARIN IdP should be. As a result, the attribute eduPersonEntitlement was added, indicating if a user that registered has an academic email address.

6.3 CLARIN Discovery Service

With hundreds of Identity Providers to choose from when a user wants to log in, it is important to offer a simple and user-friendly method to select the home organization. With the deployment and configuration of a central discovery service for CLARIN, based on DiscoJuice, this issue was addressed. Instead of browsing through long lists of IdPs, the user can now filter on the fly by typing a part of the organization's name or selecting a geographically nearby IdP. More information about this can be accessed from:

http://www.clarin.eu/page/3496

6.4 Web service authentication

Combining AAI and web services is, in the current context of web-based authentication, a difficult problem. In cooperation with the Dutch BigGrid project, some options in this field were and are investigated, see: http://www.clarin.eu/page/3482

At the same time, the CLARIN-D developers are preparing a more pragmatic short-term solution by constructing a trust network based on server SSL certificates (i.e. public key encryption).

7 AG 6: Workspaces and Hosting

7.1 Workspaces

A Personal Workspace in CLARIN-D consists of two parts:

- Online storage which is managed in a computing center and which belongs to an individual user.
- A programming API that makes it possible to embed the online storage into CLARIN-D applications.

Online storage and the API together allow a seamless flow of data between the single applications of CLARIN-D. In the first year of CLARIN-D, several workflow and software solutions were tested by the CLARIN-D partners. Finally, the decision was made to make use of the OwnCloud software, which fits the CLARIN-D requirements:
• OwnCloud is Open Source and can be easily extended
• It offers a convenient user interface
• Integration of the online storage via WebDAV into a users local machine
• The possibility of using Shibboleth Sign On for user authentication
• Well defined and exhaustive application programming interface

The Forschungszentrum Jülich (FZJ) hosts a test installation of OwnCloud for CLARIN-D. This test installation is used to implement the integration of the OwnCloud software into the components of the CLARIN-D infrastructure, for example WebLicht, the Federated Content Search etc.

![OwnCloud web interface](image)

Figure: The OwnCloud web interface

7.2 Hosting

Three computing centers are partners in CLARIN-D: the Rechenzentrum Garching of the Max Planck Society and the IPP (RZG), the Forschungszentrum Jülich (FZJ) and the Gesellschaft für wissenschaftliche Datenverarbeitung Göttingen (GWDG). These three computing centers are responsible for hosting the CLARIN-D services. In close cooperation with the computing centers, the following division of hosting tasks was created:

<table>
<thead>
<tr>
<th>Computing Center</th>
<th>Hosting Tasks</th>
<th>Status</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>RZG</td>
<td>Web services</td>
<td>✔</td>
<td>The Stuttgart Dependency parser was implemented as a web service by the Stuttgart CLARIN-D center and deployed at the RZG. Afterwards, the parser was applied to the TüBa-D/DC</td>
</tr>
<tr>
<td></td>
<td>Center registry</td>
<td>✔</td>
<td>Implemented by the RZG – already in use for the WebLicht harvesting</td>
</tr>
<tr>
<td>FZJ</td>
<td>Workspaces</td>
<td>✔</td>
<td>See above: the software is in place and can be used</td>
</tr>
<tr>
<td></td>
<td>Helpdesk</td>
<td>✔</td>
<td>Concept done by the Hamburg CLARIN-D center in cooperation with FZJ, test installation is online</td>
</tr>
<tr>
<td></td>
<td>Monitoring</td>
<td>✔</td>
<td>Installed and configured by FZJ</td>
</tr>
<tr>
<td>GWDG</td>
<td>PID services via EPIC consortium</td>
<td>✔</td>
<td>EPIC API version 1 is in productive status and used, version 2 is in beta and is being tested</td>
</tr>
</tbody>
</table>
8 AG 7: Web services, Generic services

8.1 Web services

In the first year of CLARIN-D, the WebLicht web service infrastructure was further developed and reached version 2. With this version, WebLicht is deeply integrated into the CLARIN-D infrastructure:

- Every web service is described with CMDI metadata
- The web services are identified via PID
- The metadata of the web services is stored in the center’s repositories and harvested by the chaining engine from Tübingen
- A web services integrates the ISOCat service into WebLicht
- Further development of the Text Corpus Format (TCF)

In addition, the following functionality was added to WebLicht:

- Parameterization of web services
- Integration of the CQP query engine
- New user interface

New web services were developed:

- Audio-Video web services (Munich / MPI)
- Dependence parser (Stuttgart / Tübingen)

8.2 Generic Services

To establish interoperability between different resources and tools, converters are necessary. Converters in CLARIN-D are implemented as web services. WebLicht contains a growing number of converters for widely used linguistic data formats. For the following data formats, converters are already available or planned to be realized in the near future:

- LAF/MAF
- TEI
- Negra Export
- TigerXML
- Paula
- Exmeralda
- TEI-Drop
- EAF
- Folker
- BPF

9 AG 8: Simple store

Within the context of CLARIN-D’s first year, setting up a simple store was considered to be one of the tasks better taken up at a later time. In the second year the Simple Store concept was adopted by EUDAT (see http://www.eudat.eu/simple-store), which is currently implementing a prototype service
that at the first sight seems to fulfill CLARIN-D’s needs. Close coordination with EUDAT on this topic is of course foreseen. Among other things, this is ensured by the fact that UTU, MPI and the CLARIN computing centers are also participating in EUDAT.

10 AG 9: Monitoring

To achieve a high level of service it is critically important to have automatic checks (probes) in place for CLARIN repositories, web applications and web services. As specified in document CLARIND-AP3-005 (http://www.clarin.eu/specification-documents), a careful analysis showed that a standard package as Nagios (or the compatible forked version, Icinga) fulfills these monitoring needs. In cooperation with the Forschungszentrum Jülich, Nagios was installed and several plugins to monitor services were deployed. This is expected to be extended in 4 ways:

- The setup of a public webpage where CLARIN users can check the status of the centers and their services (to be available by June 2013).

- Automatic checks based on the information contained in the center registry, like OAI-PMH and SRU/CQL endpoints.

- Including more detailed probes for each center.

![Figure: Nagios monitoring system](image-url)
11 AG 10: Federated Content Search

The CLARIN-D Federated Content Search (FCS) started up this past year. We have had several rounds of (early) implementations, resulting in a clear vision of how the parts of the FCS infrastructure will interact in the future.

We defined which tasks are performed by the endpoints and which tasks by the aggregator. We also defined the interaction with the rest of the FCS infrastructure, i.e., how to search in a set of documents as defined by the VLO, the Virtual Collection Registry, or the metadata search.

Based on the vision of the overall FCS infrastructure, we defined the precise behavior of the endpoint, in the second part of the FCS document. Furthermore, demands on the whole CLARIN-D infrastructure, as related to the FCS, were defined.

To give an example of a decision with an impact on the infrastructure, we defined that the FCS endpoints must understand the MDSelfLink URI's from the CMDI metadata files that correspond to the data that they unlock through search. By "understanding" we mean that the endpoint must be able to restrict the search space to the data described by any set of its own CMDI files. Other aspects of the endpoints (e.g., announcement of resources, browsing through the results set, restricting the search, announcing available search methods) were also precisely defined in the document. Based on the definitions of the document, most participating centers have put up an initial endpoint, which allows the process to move forward smoothly.

The definition of the acceptable return formats for the endpoints resulted in a healthy discussion. Over several meetings, a definition was agreed upon that is agreeable to the FCS stakeholders.

Finally, we mention the aggregator. Similarly to the endpoints we have defined what the aggregator should do and how it should communicate with the outside world as well as the known endpoint. A first beta version of the FCS aggregator is currently available via:

http://weblicht.sfs.uni-tuebingen.de/Aggregator/

Eight CLARIN-D centers are currently offering SRU/CQL endpoints, which can be considered a success given the relatively short timeframe to set this up. The major long-term challenge will surely be the more sophisticated search operations and semantic harmonization (if it turns out to be feasible).

More information about this subject, including technical documentation can be found at:

http://www.clarin.eu/fcs

12 AG 11: Replication

12.1 Logical replication

Within the context of CLARIN-D, the MPI-TLA\(^1\) has been looking for solutions to bring (1) persistency of data and (2) persistency of services. For this purpose we have been working on the REPLIX project to

\(^1\) https://tla.mpi.nl
create a logical replication layer, based on the Integrated Rule-Oriented Data System (iRODS2), and a logical replication policy implemented on top of this logical replication layer.

The logical replication policy is responsible for replicating the data on a collection level, achieving (1), and for a number of additional steps, needed to achieve (2). The full logical replication policy consists of the following steps, implemented in the last year:

- Generation of the file list to replicate based on the supplied node-id (i.e. a subcollection identification code).
- Transfer the files with an rsync-based micro-service.
- Link the new data into the destination archive.
- Refresh auxiliary databases in the destination archive
- Synchronize the authorization information (AMS3 rules).

The last step, currently being implemented:

- Administration of the PID records with the new digital object (DO) locations

An iRODS federation has been set-up between MPI-TLA in Nijmegen, the Netherlands, and RZG4 in Garching, Germany. This iRODS federation has been used to test logical replication and is intended to run the archive backup procedure. The logical replication has also been demonstrated during two meetings, ICRI 2012 in Copenhagen and RDAP 2012 USA. For this demonstration, an iRODS federation was created between MPI-TLA and RENCI5, demonstrating the logical synchronization across continents. The experiences and ideas behind the REPLIX project are also used as input for the EUDAT6 project.

12.2 SAM-FS integration

The data in the MPI-TLA archive is stored in a hierarchical storage management (HSM) system, SAM-FS. Therefore, part of the data is available from online, fast cache and part of the data is migrated to offline tapes. Based on the SAM-FS rpc API we have developed a first set of iRODS micro-services that takes the online/offline state of files into account based on the following three rules:

1. Online files are replicated immediately. If the file was initially offline, the file is released after the replication.
2. Offline files are staged and the replication command is queued again.
3. Files being staged are skipped and the replication command is queued again.

The iRODS delayed rule system is being tested as a queuing mechanism. The delayed rule mechanism also allows the execution of a number of rules in parallel. This is expected to increase the performance significantly. Again this has been tested in the iRODS federation setup between MPI-TLA and RZG.

2 https://www.irods.org/
3 Access rights Management System, https://tla.mpi.nl/tools/tla-tools/ams
4 http://www.rzg.mpg.de/
5 http://www.renci.org/
6 http://www.eudat.eu
More details about this topic can be found at: http://www.clarin.eu/page/3497

13 Summary

The first two years of CLARIN-D have proven to be very productive. In terms of the general infrastructure, there was the advantage that some components were already available from the CLARIN preparatory phase, so that these could be extended immediately without the need to build up the infrastructure foundations from scratch. On the other hand, CLARIN-D has initiated a number of new additions to the infrastructural landscape as well, for instance the center registry, the monitoring setup, the use of part identifiers, a wide set of new (metadata-described) web services, an aggregator for federated content search. These are all important building blocks that will certainly serve as inspiration for the entire European CLARIN network.

This successful start does not mean that there are no challenges left for the next years. A large amount of additional software needs to be developed, which will most probably prove to be the greatest challenge. The amount of effort needed to polish user interfaces should also not be underestimated.

In short, though, the experiences, hard work and cooperative spirit of the CLARIN-D partners throughout the past years give us hope for continued success, cooperation, and innovation in the upcoming period.