CLARIN-D, BMBF-FKZ: 01UG1120A-I, 01UG1420A-I

Responsible: Dirk Goldhahn

Editors: Dieter Van Uytvanck, Dirk Goldhahn, Thorsten Trippel
Contributors: Emanuel Dima, Thomas Eckart, Willem Elbers, Twan Goosen, Kees Jan van de Looij, Oliver Schonefeld, Olha Shkaravska, Thorsten Trippel, Menzo Windhouwer
Table of Contents

1 Introduction .. 4
2 WG 1: Repositories.. 4
 2.1 Setup of Repositories.. 4
 2.2 Centre Assessment ... 5
3 WG 2: Persistent Identifiers (PID).. 5
4 WG 3: Registries .. 6
 4.1 Centre Registry ... 6
 4.2 Virtual Collection Registry ... 7
 4.3 Data Category Registry and Data Concept Registry .. 7
 4.4 Relation Registry ... 8
5 WG 4: Metadata ... 8
 5.1 CMDI metadata framework ... 8
 5.2 Arbil .. 9
 5.3 Component Registry ... 10
 5.4 OAI Harvester .. 10
 5.5 Virtual Language Observatory ... 11
6 WG 5: Authentication & Authorization Infrastructure ... 12
 6.1 CLARIN IdP ... 12
 6.2 CLARIN Discovery Service ... 12
 6.3 Web service authentication ... 12
7 WG 6: Workspaces and Hosting ... 13
 7.1 Workspaces ... 13
 7.2 Hosting .. 13
8 WG 7: Web services, General services ... 14
9 WG 8: Simple store .. 15
10 WG 9: Monitoring .. 16
11 WG 10: Federated Content Search .. 16
12 WG 11: Replication ... 18
 12.1 Technical Details of the Prototype Software ... 19
13 Frontend developments .. 20
14 Summary ... 20
1 Introduction

In this report, we focus on the main advances of the technical infrastructure since the last CLARIN-D AP3 reporting period which ended in May 2014.

Prior to giving a detailed account of the progress made in the various specialized technical infrastructure working groups, we would like to draw attention to some of the milestones that have been achieved.

All CLARIN-D Centres have undergone the process of centre assessment and certification. Currently all CLARIN-D centres are in the process of renewing their CLARIN B centre status and their Data Seal of Approval.

Several infrastructure registries have been implemented, such as a centre registry, a virtual collection registry and a data category registry. Together they allow for reliability, flexibility and interoperability in the distributed environment of CLARIN-D.

The Component Metadata format CMDI was submitted as an ISO standard. To support interoperability between different initiatives, it was divided into three different parts:

1. The model (ISO 24622-1:2015 Language resource management -- Component Metadata Infrastructure (CMDI) – Part 1: The Component Metadata Model),
2. The component description (intended to become ISO 24622-2, currently a Work Item in ISO TC 37 SC 4), and
3. Core components for language resources (intended to become ISO 24622-3).

The first part has been published as an ISO standard recently.

With regards to the Virtual Language Observatory, CLARIN’s facetted browser based on metadata harvested from CLARIN centres, substantial improvements in user functionality and metadata quality have been achieved.

Finally, the CLARIN IdP has undergone substantial changes in order to improve stability before migrating it to the computing centre in Garching.

These and other recent developments will be specified in more detail in the description of the technical working groups (WG) below. Note that rather than include long descriptive texts, we have tried to link to “living” documents or web sites (in the spirit of CLARIN) as much as possible, resulting in a more up-to-date overview.

2 WG 1: Repositories

2.1 Setup of Repositories

As one of the important pillars of the distributed CLARIN-infrastructure, each of the centres has set up a repository to store the resources they are hosting in a standardized and sustainable way. This process included the creation (and possibly conversion) of metadata and persistent identifiers.

The repository infrastructure in all centres was fully established and integrated into the CLARIN-D infrastructure, as the outcome of the centre assessment process has proven.
In August 2014 a workshop on archiving and repositories (organized by the INNET project) took place in Nijmegen, Netherlands. During this workshop several representatives of CLARIN Centres presented their repository solution and discussed the reasoning behind their choices and the details of their implementation:

2.2 Centre Assessment

All nine CLARIN-D centres have taken part in two assessment procedures to determine official CLARIN centre status:

- The CLARIN centre assessment, which analyses the centres in terms of compliancy with the B centre requirements (the most demanding level at the moment of writing).
- By the Data Seal of Approval committee (http://www.datasealofapproval.org/), which is an independent body that checks whether a centre’s data management strategy and its policy are suitable for long-term archiving.

In May 2013, all nine CLARIN-D centres were awarded the CLARIN B centre status (http://www.clarin.eu/content/certified-centres). They also all received the Data Seal of Approval. This is a major achievement and an example for other national CLARIN consortia. Until end of May 2015 all CLARIN-D centres will have renewed their status. Changes in the assessment have been identified and consequences have been analysed by all centres. Based on this information all necessary documents have been compiled. Thus, procedures for obtaining the B centre assessment and the Data Seal of Approval are on time.

3 WG 2: Persistent Identifiers (PID)

To ensure the stability of scientific citations of language resources and the associated metadata descriptions, CLARIN relies on the use of Persistent Identifiers. By adding a level of indirection when resolving an identifier towards an URL, the long-term stability of the references can be guaranteed. A summary of the role of PIDs in CLARIN centres can be found at http://www.clarin.eu/node/3965.

All CLARIN-D centres have assigned handles to their metadata records and resources. Most of them (7 in total) are connected to the EPIC service to acquire and manage handle PIDs. The MPI and IDS are not using EPIC – they have their own prefix and handle server.

In order to stay aware of new evolutions in the field of PIDs, CLARIN has organized two workshops in the course of 2014: one documenting the use of handles in CLARIN centres, and another one on the potential use of DataCite DOIs. For more on these workshops, see:

4 WG 3: Registries

4.1 Centre Registry

Accessing resources and endpoints (SRU for content searches, OAI-PMH for metadata harvesting, etc.) in a distributed setup requires an up-to-date list of addresses. Therefore CLARIN needs a machine-readable registry where such pointers can be stored and accessed.

The first versions of the CLARIN centre registry, where both technical and organizational information about centres and services is stored, grew organically from emerging needs. In the course of 2014, the entire back-end (based on Django and SQLite) was rewritten from scratch, including many optimizations in the data model. This resulted in a code base which is much better documented and easier to maintain in the future. Where originally the RZG computing centre was responsible for the implementation and the hosting of the centre registry, CLARIN ERIC and CLARIN-D decided to take over the development part, as this proved to be more efficient. The new version is available at: https://centres.clarin.eu

The centre registry is currently used by the Federated Content Search aggregator, WebLicht and the OAI-PMH harvester as authoritative information source. It will be used in the near future as the authorization source for the Icinga monitoring and the Piwik user statistics, allowing the main contacts of each centre to log in to these web applications.

![Center Registry Table]

Figure: the new HTML interface of the centre registry
4.2 Virtual Collection Registry

A virtual collection is a coherent set of links to digital objects (e.g. annotated text, video) that can be easily created, accessed and cited. The links can originate from different archives, hence the term virtual. A virtual collection is suitable for manual access (using a web browser) as well as automated processing (e.g. through a web service).

CLARIN provides a registry where scholars can create and publish their virtual collections. It is closely integrated with the infrastructure and provides persistent identifiers and federated login. The collection metadata is openly available and accessible via the Virtual Language Observatory.

The old alpha version of the Virtual Collection Registry was reworked and updated in cooperation with CLARIN ERIC. Important changes include the replacement of the authentication and authorization framework, use of the new EPIC API (version 2), support for content negotiation and integration of the new CLARIN layout. The exact work plan can be found at https://www.clarin.eu/node/3960, while the updated web application is available at:

http://clarin.eu/vcr

More general background information and some examples are available via:

http://www.clarin.eu/content/virtual-collections

4.3 Data Category Registry and Data Concept Registry

The Data Category Registry is a step in the direction of interoperability at the level of linguistic encoding (tag sets, metadata elements, etc.). The basic idea is to register all widely used concepts/terminology so that everyone can refer to them. All is based on the ISO 12620 standard, which is a generic model not restricted to linguistics.

The ISO TC37 Data Category Registry (DCR) was created in 2008 as one of the first ISO standards delivered in the form of a database (ISOcat1). The Max Planck Institute for Psycholinguistics (MPI) has provided development, hosting, and support services and acted as the Registration Authority (RA). The use of the DCR has grown over the years. Feedback from users, coupled with changes in ISO standardization procedures, necessitated a review of the current system and operational framework to improve usability.

The MPI stopped being the RA and hosting provider in December 2014. After reviewing potential replacement systems, ISO TC37 selected TermWeb, from Interverbum Technology, due to its support of the required data model.

For users from the CLARIN ERIC2, the Meertens Institute now hosts a new registry for CLARIN relevant concepts based on the corresponding ISOcat data categories, such as those used for the Component MetaData Infrastructure (CMDI).

1 http://www.isocat.org/
2 http://www.clarin.eu/
The new CLARIN Concept Registry\(^3\) (CCR) is less complex than ISOcat, and is a closed registry; only the national CCR-coordinators\(^4\) will be able to input and edit (new) concepts. All Data Category Selections (and individual DCs) that the national ISOcat coordinators wanted to keep are available in the new CCR as well. PIDs will also remain recognizable in the CCR.

For now, the entries of the ISOcat Data Category Registry are still available in a static manner. All Data Category Persistent IDentifiers, e.g., http://www.isocat.org/datcat/DC-4146, remain resolvable. The public part of the ISOcat registry can be browsed using the ISOcat Guest workspace\(^5\).

The CLARIN Concept Registry\(^6\) is available as of January 2015, the updated Component Registry (using CCR instead of ISOcat) was released in the course of February 2015.

The switch from Data Category Registry to Concept Registry and its migration from the MPI to the Meertens Institute are one example of a successful migration. If a migration of services is necessary, it is crucial that it is well-prepared. For the most crucial CLARIN services, the so-called A-services, such plans are prepared as a fall-back procedure if a centre can no longer support a service. The A-services are identified by a set of criteria\(^7\) that were established by CLARIN ERIC. Those central services are listed together with their current status\(^8\) and the migration plans that have been prepared.

4.4 Relation Registry
The relation registry is discontinued, as relations can now be stored in CLARIN concept registry.

5 WG 4: Metadata
The Component MetaData framework forms the base of metadata modelling in CLARIN. As the work done in this workgroup was spread across several subgroups, we mention the activities here as subsections. In general, detailed information and links to the software mentioned can be found at http://www.clarin.eu/cmdi

5.1 CMDI metadata framework
Metadata for language resources and tools exists in a multitude of formats. To overcome this dispersion, CLARIN has initiated the Component MetaData Infrastructure (CMDI). The ISO-standardized CMDI model (ISO 24622-1:2015) provides a framework to describe and reuse metadata blueprints, the standardized description of the components allows the development of interchangeable metadata schemas.

After a phase of conceptual orientation and discussion among metadata experts and users throughout the CMDI community, led by the then newly formed CMDI task force, work on a concrete implementation

\(^4\) http://www.clarin.eu/content/concept-registry-coordinators

\(^5\) http://www.isocat.org/rest/user/guest/workspace

\(^6\) http://www.clarin.eu/conceptregistry

\(^7\) http://www.clarin.eu/node/4001

\(^8\) http://www.clarin.eu/node/4002
of a successor to the current version of the metadata framework began mid-2014. This CMDI 1.2 will be the basis for further development of ISO 24622-2, the standardization of the component description language.

Major changes in CMDI 1.2 include the storage of lifecycle information (versioning and deprecation), support for external vocabularies, the possibility of mandatory attributes and a cleaner and more compatible XML representation (see CMDI 1.2 changes - executive summary\(^9\)).

In the second half of 2014, most of the core ‘toolkit’ was developed, including scripts to convert existing CMDI documents to the new version. For early to mid-2015, some work remains to be done before CMDI 1.2 can be rolled out into production environments:

- Thorough testing of the toolkit
- Adaptation of the infrastructure components (most importantly the Component Registry and the Virtual Language Observatory)

Centres will be able to migrate to CMDI 1.2 at their own pace, and CMDI 1.1 will keep being supported for the time being.

Publications

Twan Goosen, Menzo Windhouwer, Oddrun Ohren, Axel Herold, Thomas Eckart, Matej Ďurčo and Oliver Schonefeld: [CMDI 1.2: Improvements in the CLARIN Component Metadata Infrastructure](http://www.clarin.eu/sites/default/files/cac2014_submission_5_0.pdf)

5.2 Arbil

Arbil is a metadata editor that was initially designed to fill the needs of a defined set of users with a predefined workflow. Since then, a great deal of additional functionality has been added, including support for CMDI.

Version 2.5 of the Arbil metadata editor was released in July 2014 (see http://www.mpi.nl/tg/j2se/jnlp/arbil/release_notes-arbil-stable_2.5.txt). This is the first multi-lingual version of Arbil, which can now be set to either English, German, Spanish or Italian. Other new features include the import and export of favourites (which was available as a plugin before and is now integrated into the application), the deletion of fields and nodes directly from the table (rather than only from the tree) and an alternative display mode for the tree (‘verbatim XML’), which reflects the exact component structure of CMDI documents. Furthermore, a large number of small improvements and bug fixes are included\(^{10}\).

A successor version 2.6 has been prepared. It will contain a number of internal fixes and updates, and is expected to be released mid-2015. A function that allows exporting of CMDI from IMDI metadata will be added in the near future.

\(^9\) http://www.clarin.eu/node/3921

\(^{10}\) https://tla.mpi.nl/tla-news/arbil-2-5-release-notes/
5.3 Component Registry

The component registry, browser and editor (altogether commonly referred to as ‘Component Registry’, http://catalog.clarin.eu/ds/ComponentRegistry) allows metadata modellers to create, edit and store CMDI profiles and makes published profiles available through a public REST interface and a user-friendly web application on top of this service.

User groups have been added in release 1.14.0. User groups are collectives of users who share access to individual components or profiles. As such, a component or profile is still owned by a particular user, but once made available to a group, every member of that group can access, modify, publish that profile or component or move it to a different group. A simple admin interface is implemented as well. It allows to add/remove groups and add/remove group members for a given group.

Next, the backend code has been significantly refactored, making the code easier to debug and less error-prone. In particular, profile- and component-structures have been merged on persistence level into BaseComponent.

The former ISOcat search functionality in the Component Editor has been adapted to the new CLARIN Concept Registry (CCR) in the beginning of 2015. The components defined in the Component Registry have been updated to now reference the equivalent concepts in the CCR in place of the deprecated ISOcat identifiers.

Development of a new JavaScript-based front-end\(^1\), which implements the user interface, began early 2015. The current front-end architecture and its language Action Script/Flex have become obsolete since they cannot effectively handle the features added over the years of development of Component Registry. The development of the new front-end takes place in cooperation with CLARIN–DK.

5.4 OAI Harvester

The OAI harvester gathers metadata from centres all over the world and makes them available for other services such as the Virtual Language Observatory.

In the second half of 2014 most of the efforts put in can be regarded as support for adding new (large) repositories to the VLO. Tests were performed with the Koninklijke Bibliotheek in Den Haag, Netherlands, and there was a considerable amount of troubleshooting performed when it came to harvesting the Meertens Institute. Because of repositories added to the harvesting schema in 2014, the harvest manager could barely cope with the load. This resulted in a necessary but not very well manageable division of the work load over several days.

Because of the situation that had arisen by December 2014, and also because of the need to add more large repositories in the future, in the first three months of 2015, two major improvements were made. The first is to allow for more metadata records to be obtained in a single HTTP request. On average, this lead to a speed up of the harvesting process by a factor between 5 and 10. Next to this, the OAI protocol is utilised more deeply now. That is: the version of the harvest manager currently under development, supports so called 'selective harvesting'. This means that only newly added records need to be transported over OAI. With this extension, a highly configurable manager (most options can be set at

\(^{1}\) See https://www.clarin.eu/node/4045 for a detailed workplan
provider level) will be available. Not only selective harvesting, but also automatic harvesting of OAI endpoints that led to errors, and blocking of endpoints causing problems, will be possible.

All in all, a considerable effort has been made to provide a sound base for the VLO to obtain its data from. Because of the changes made to the harvest manager, in the near future, the number of records visible in the VLO can increase dramatically.

5.5 Virtual Language Observatory

The VLO (http://www.clarin.eu/vlo) is a low-barrier end-user metadata portal that brings together all CMDI metadata records within a faceted browser. Significant improvements in the period from 01.06.2014 to 31.05.2015 are:

- Several meetings of the VLO/metadata task force/working group to gather user feedback, decide about VLO configuration and facet definition and general advice of the developers (Haaf et al. 2014)
- User feedback from CLARIN-D centres was evaluated, and configuration adapted in several feedback rounds.
- Feedback about CMDI profiles with incorrect concept links and incorrectly created CMDI files was given to several CLARIN centres.
- Usability and the user interface was improved (by support of new facets, improved autocomplete functionality, first support of multilingual values etc.)
- Various improvements in value post-processing and normalization (for facets like language, organization, national project etc.), support of CLAVAS vocabulary for organization names
- Support of user feedback via the CLARIN-D helpdesk
- Improved value extraction algorithm in the VLO importer
- Various bugfixes and cosmetic improvements, upgrade of dependencies

Publications

6 WG 5: Authentication & Authorization Infrastructure

In the CLARIN preparatory phase, the so-called Service Provider Federation (http://www.clarin.eu/spf) was initiated, cross-connecting Identity and Service Providers from Germany, the Netherlands and Finland. Although this was a significant step forward, additional steps were necessary to advance the SPF to a state where it could be used as the basis for daily work. In CLARIN-D such steps forward were made, as described in detail in the subsections below.

6.1 CLARIN IdP

The CLARIN IdP was developed to provide users without a functioning Identity Provider (or one that does not release necessary attributes) with a fall-back system to log in to CLARIN SPs. For more, see: http://www.clarin.eu/page/3398

The CLARIN IdP has been migrated to RZG and to the host idp.clarin.eu. The underlying user store is running on infra.clarin.eu with a Drupal-based management interface. This user store is replicated via LDAP in a master-slave setup, to the idp.clarin.eu server. This will ensure a functioning IdP even if the infra.clarin.eu server is unavailable. The final configuration steps were finished in the last week of March, 2015. An ongoing task is the replacement of the current user interface used to manage the CLARIN IdP accounts. We are currently considering PWM12, OpenIDM13 and Unity14.

6.2 CLARIN Discovery Service

With hundreds of Identity Providers to choose from when a user wants to log in, it is important to offer a simple and user-friendly method to select the home organization. This issue was addressed with the deployment and configuration of a central discovery service for CLARIN, based on DiscoJuice. Instead of browsing through long lists of IdPs, the user can now filter on the fly by typing a part of the organization’s name or selecting a geographically nearby IdP. For more on this, see: http://www.clarin.eu/page/3496

The discovery service has also been moved to a server (VM) running at the RZG data centre. The discovery service is now reachable from the host discovery.clarin.eu. The underlying data source, used by the discovery service to generate the list of identity providers, is monitored via Icinga. Since this service is now running at a highly available VM monitored and operated by the RZG, we are not actively looking into a redundant setup for the moment.

6.3 Web service authentication

In the Dutch BigGrid project, several alternatives of accessing web services on the basis of SAML assertions have been investigated (see http://www.clarin.eu/content/web-services-and-aai). In the end using an OAuth2 Authentication Service was proven to be most promising. A first use case involving the CMDI Component Registry and the, now defunct, ISOcat Data Category Registry was proven to be successful. In 2013, before the current reporting period, the NDG OAuth2 Authentication Server was

12 https://code.google.com/p/pwm/
13 http://openidm.forgerock.org/
14 http://unity-idm.eu/site/about
deployed to the catalog.clarin.eu Service Provider. Its setup and the changes required are now documented at https://github.com/TheLanguageArchive/ndg_oauth.

In the context of one of CLARIN-D’s discipline-specific working groups, another use case involving web service access to TLA-based resources from a tool developed by the University of Cologne was deployed. Here the use of the SAML/OAuth2 Bridge turned out to be relatively straightforward for both sides, e.g., the server side could use Java Spring’s OAuth2 support basically out-of-the-box and the client could use common OAuth2 packages for Python.

Another use case developed in CLARIN-D is to use the SAML/OAuth2 Bridge for connecting WebLicht with the ownCloud solution for private workspaces. First experiments for this are being done in Tübingen. An interesting new aspect of this use case is the draft RFC for OAuth 2.0 Token Inspection, which is supported by an ownCloud app but not yet by the NDG OAuth2 Authentication Server. As the Authentication Server runs behind Apache it might be possible to put a wrapper in between that translates the RFC-based requests to thepropriety requests of the NDG OAuth2 Authentication Server. In this use case also experiments are run with an alternative Authentication Server, the SURFnet OAuth-API.

7 WG 6: Workspaces and Hosting

7.1 Workspaces

A Personal Workspace in CLARIN-D consists of online storage for individual users, which can be accessed via a programming API by CLARIN-D applications. After evaluation of several software packages, ownCloud was deemed best suited for use as the basis software for implementing personal workspaces in CLARIN-D.

The Forschungszentrum Jülich (FZJ) hosts a test installation of ownCloud for CLARIN-D, which allows login via Shibboleth. Although CLARIN-D applications also allow login through Shibboleth, the security architecture needs to be extended for a seamless single sign-on experience on the user side. The Shibboleth authentication allows authenticated communication between a web application (or other online resource) and a user (typically through a web browser). However, to be able to exchange data between ownCloud and CLARIN-D web services, the web applications need to act on behalf of the user. This is currently not possible using only Shibboleth protocols. The current focus within this working group has been extending authentication mechanisms used in the CLARIN-D infrastructure to allow web applications or services to access the ownCloud storage service on behalf of an authenticated Shibboleth user. For this purpose, combining the OAuth protocol with the Shibboleth authentication is being considered, and a prototype implementation of the combined architecture is under development. The authentication scheme that will be the outcome of this effort can also be used by other applications and services with similar requirements.

7.2 Hosting

Three computing centres are partners in CLARIN-D: the Rechenzentrum Garching of the Max Planck Society and the IPP (RZG), the Forschungszentrum Jülich (FZJ) and the Gesellschaft für wissenschaftliche Datenverarbeitung Göttingen (GWDG). These three computing centres are responsible for hosting the CLARIN-D services. In close cooperation with the computing centres, the following division of hosting tasks was created:
### Computing Centre	Hosting Tasks	Comment
RZG	Web services	The Stuttgart Dependency parser was implemented as a web service by the Stuttgart CLARIN-D centre and deployed at the RZG. Afterwards, the parser was applied to the TüBa-D/DC
WebLicht failover	Virtual Machine that will provide load balancing as well as act as a failover in case of migration/maintenance of the Tübingen-hosted main server.	
Centre registry	Hosted by the RZG – see section 4.2 for details.	
Discovery Service	Fully migrated from MPI to RZG, to ensure higher availability.	
Identity Provider	Partially migrated from MPI to RZG, further migration planned.	
VLO alpha version	Test environment for new versions of the VLO.	
Mind Research repository	Data repository for (largely psycholinguistic) experiment data, including statistical data bundles, see http://openscience.uni-leipzig.de/	

FZJ

| Workspaces | Software is installed and available as beta service. Integration with other CLARIN-D applications is in progress.
| Helpdesk | OTRS installation is online, in close cooperation with the Hamburg CLARIN-D centre.
| Monitoring | Installed and configured by FZJ.
| Piwik user statistics | An installation of Piwik (http://piwik.org) is planned.

GWDG

| PID services via EPIC consortium | EPIC API version 2 is in production.

8 WB 7: Web services, General services

WebLicht is an execution environment for automatic annotation of text corpora. Linguistic tools such as tokenizers, part of speech taggers, and parsers are encapsulated as web services, which can be combined by the user into custom processing chains. The resulting annotations can then be visualized in an appropriate way, such as in a table or tree format.

The WebLicht web application and its web services are constantly being further developed and improved. There were also some new web applications and web services introduced in the third year of the project.

New web services include:

- Orthographic Canonicalizer (CAB) for orthographic normalization of historical texts
- Lexical Database service (dlexDB) to obtain statistical information for lexical types
- A morphological analyser and parsers for Dutch, English, and German
- Externally Trained Named Entity Recognizer which uses external training models
Many of the existing services have been extensively tested for reliability and scalability with the Bombard command-line tool, which simulates users invoking tool chains. For testing predefined chains, it was configured to simulate over 80 simultaneous users by submitting both short texts and novels to web services. Bombard will be made available to the developer group in the near future. Frameworks for improving both vertical and horizontal scalability were evaluated and necessary extensions are being developed for our needs. The results will be presented to the web service developers, so that better performance of more web services can be achieved.

In addition to reliability and scalability testing, existing web services have been evaluated in terms of quality of output and many were retrained or otherwise updated to produce better output.

The most recent version of the WebLicht web application includes new features and integrates more CLARIN-D components:

- CLARIN-D HelpDesk integration for users to ask questions or give feedback
- Tündra integration to search and view parsed result sets
- Introduction of predefined tool chains which have been tested for reliability and quality.

Several new general services have been added or are under construction:

- WaaS (WebLicht as a Service) can be used to invoke WebLicht chains programmatically or from the command line.
- As part of a cooperation of WebAnno and WebLicht and as an effort to integrate manual and automatic linguistic tools into a common workflow, an online tool for training named entity models was created. The NER Model Trainer tool is accessed via a web interface (http://weblicht.sfs.uni-tuebingen.de/rws/service-opennlp/train-ner-model.html). The efficiency of manual annotation work can be improved by using the NER Model Trainer and the Externally Trained NER web service together.

A failover system at a computing centre has been implemented and is being tested to increase reliability and stability of web services. This is being used for load balancing and failover procedures in the case of unavailability of sufficient computing resources at CLARIN centres running web services.

9 **WG 8: Simple store**

The Simple Store in CLARIN is intended to provide a way for researchers without deep technical background and without a direct connection to a CLARIN centre to easily save their research data and reference it by a PID. The specification of the simple store does not include requirements with regard to Quality Assurance (QA) by an archive manager nor data descriptions in form of structured and detailed metadata. Access control can be simple, allowing either public access or access only by the data depositor. Due to cooperation with EUDAT, the system to be employed for the Simple Store is EUDAT’s B2SHARE (see https://b2share.eudat.eu), which is a productive service in EUDAT and fulfils CLARIN-D’s needs for the Simple Store. Its functionality extends beyond these requirements, for example by providing a community based comment and evaluation system, instead of an expert QA, which might especially be suitable for the long tail of research data not in the focus of CLARIN centres.
10 WG 9: Monitoring

To achieve a high level of service it is critically important to have automatic checks (probes) in place for CLARIN repositories, web applications and web services. As specified in document CLARIND-AP3-005 (http://www.clarin.eu/specification-documents), a careful analysis showed that a standard package as Nagios (or the compatible forked version, Icinga) fulfils these monitoring needs. In cooperation with the Forschungszentrum Jülich, Icinga was installed and several plugins to monitor services were deployed. This has been extended in several ways:

- The setup of a public webpage where CLARIN users can check the status of the centres and their services (http://www.clarin-d.de/en/news/status-infrastructure.html).
- Automatic checks based on the information contained in the centre registry, like OAI-PMH and SRU/CQL endpoints.
- Checks to see if the issued handles are resolving and how long this resolution process takes.

![Nagios monitoring system](image)

Figure: Nagios monitoring system

11 WG 10: Federated Content Search

The goal of the CLARIN Federated Content Search (CLARIN-FCS) - Core specification is to introduce an interface specification that decouples the search engine functionality from its exploitation, i.e. user-interfaces, third-party applications, and to allow services to access heterogeneous search engines in a uniform way.
All components of the CLARIN Federated Content Search (FCS) infrastructure have been further developed. The endpoints have implemented the interface specification and have added more resources. The user interface for the aggregated search (the Aggregator) is being evaluated and revised. The supporting environment has continued to develop, including:

- SRUClient, SRUServer,
- FCSSimpleEndpoint Java libraries and
- the Aggregator

Specific work done in the CLARIN-D FCS components include:

Interface Specification:

After the new FCS specification has been approved by the CLARIN Centre Committee work has focused on extending the specification to support more advanced query scenarios, e.g. support for linguistic annotation layers like part-of-speech (POS). However, this is a challenging task, because of the heterogeneous nature of the resources, i.e. the different tag sets that are used by the centres. It was decided to upgrade the underlying protocol to SRU 2.0, because this allows the usage of other query languages besides CQL. The CQP query language was selected for advanced queries, but it needs to be tailored for FCS usage. I.e. no official ENBF grammar for CQP exists, yet such a grammar is required for writing a specification. Therefore such a grammar needs to be defined, implemented and evaluated. For the common POS tagset in FCS the Universal Dependencies were selected. Other annotation layers such as lemma and phonetic transcriptions are also under consideration to be integrated in FCS.

After successful evaluation of FCS’s CQP dialect, the next steps are defining appropriate return formats (“DataViews”) and writing an “Advanced FCS” specification. After this specification has been written, the software components need to be adjusted and enhanced.

Aggregator:

The Aggregator web application has been updated and improved. The user interface has been completely redesigned and now presents a lighter look and feel. It has also been completely rewritten using modern web technologies, which offer better responsivity to the user’s actions. The new design includes a feature that allows the user to focus on the results coming from a particular corpus and download only those results, or apply the WebLicht processing tools on them. Another useful feature, originating in a user request, is automatic detection of the language of each search result based on the text of the search result. The language detection offers, for some cases, more information than the metadata accompanying a corpus and makes the search results targeted on a specific language more accurate.

The Aggregator backend, on which the user interface rests upon, has also been heavily modified and now makes use of the latest version of the SRUClient library, which supports the latest FCS specification. The use of the new FCS protocol allows, among other things, a better presentation of multiple search hits found in the same text fragment and a much more efficient way of harvesting collections’ metadata from

15 Contextual Query Language; the default query language in the SRU/CQL protocol suite

17 Universal Dependencies, http://universaldependencies.github.io/docs/
each endpoint (reducing the number of HTTP requests by two orders of magnitude, from a few thousands to only a few dozens).

The new version of Aggregator also provides a statistics page, targeted at the developers of the FCS endpoints. The statistics provided include the average and maximum request processing time per endpoint and also runtime errors and other useful diagnostic messages.

Endpoints/Resources:

Work on compliance with the revised FCS specification is ongoing at the endpoints.

Once the revised Aggregator is in beta stage, centres asked to upgrade to the revised FCS specification. This is scheduled to start mid-2015.

Figure: The CLARIN-D Federated Content Search Aggregator

12 WG 11: Replication

Within the context of the CLARIN-D and EUDAT projects and as a proof of concept, the University of Tübingen has developed a replication software prototype to ensure long-term, reliable access to the resources stored in its Fedora repository. Integrating with the B2SAFE (http://www.eudat.eu/b2safe) replication service offered by EUDAT, this utility is currently used for backing up the data from Tübingen to the Rechenzentrum Garching (RZG).

This work is being further developed within EUDAT into a more general and mature solution for replicating Fedora repositories, which will be available to the CLARIN-D centres, improving the overall resilience, integrity and availability of CLARIN-D resources.

The prototype package can only be used for backup, whereas the final package will allow access to data from its replication site, using the infrastructure provided by the EPIC PID.
12.1 Technical Details of the Prototype Software

The CLARIN-D repository in Tübingen is backed up by a Fedora Commons system and is managed using a custom user interface written in-house. A digital object contains:

- CMDI metadata, the CLARIN standard for metadata, as a special data stream
- contextual, human-targeted data such as scientific papers or other documents
- primary or processed research data

The repository also uses the PID system for referring a digital object. A PID points to the CMDI data stream of a digital object and the CMDI references all of the other data streams.

Fedora Commons can use various storage backends. The default one is Akubra, an open-source, pluggable file storage interface. Fedora and Akubra are configured in such a way that the data hosted in the repository is immutable. Modifying a data stream only creates a new version of the data; the old version is still in the repository and can be easily accessed. Due to this workflow, backing up a versioned Fedora datastream can be done safely on the file system level.

iRODS is a data grid software system with policy-based data management facilities, data interfacing and sharing capabilities. iRODS is open source under a BSD license, is community-driven, has a simple installation procedure and is hardware agnostic, working on all major platforms. It is used in EUDAT for building a data federation across computing centres and, as part of the data federation, it is also the means for performing safe replication of data from one site to another.

An important choice made early in the implementation phase was to keep the existing Fedora repository independent of the replication service. This constraint directed the implementation: we decided to mount the file system directory that contains the Fedora Commons data as an external collection into the iRODS system.

Each new file being replicated is first assigned a new PID, only for the purpose of Safe Replication; this PID is stored locally. The file is then replicated via iRODS and subsequently, via the EUDAT iRODS rules, has the PID location field updated.

Using the replicas, the restoration of a corrupted Fedora repository is simple and fast. First the data is transferred from the replication site to the local site, using the common iRODS tools for data transfers. Then the Fedora restoration scripts are executed and the repository is set back online. Finally, a data integrity check is performed for assurance.
13 Frontend developments

In the past, the technical development has mainly focused on the backend of the technical infrastructure and the required APIs, protocols and frameworks, including the technical quality and robustness. A new focus has been laid on the user side of the infrastructure. Though interfaces exist to all services, these were defined primarily for the participants of the infrastructure development, sometimes leaving out important parts for the users of the Social Sciences and Humanities. Current plans are to provide interfaces with an increased usability to non-technical users, in order to provide a better user experience to those intended users. This requires a redesign of user interfaces, reducing the information load on the technical side and providing more application-oriented access to the users. A first beta-version of a new portal allowing direct access to the services went online in the first quarter of 2015, allowing usability tests with the CLARIN user community. A launch of the website is planned for June 2015.

For existing tools and services the user focus was added by inserting helpdesk functionality. Using the OTRS helpdesk system, a ticketing system for user requests was implemented that allows the distribution of tickets to the experts via a central point of access. The helpdesk system also records the answers for future reference and for inclusion in FAQs.

Another user group is targeted by CLARIN-D by means of a repository of teaching and training material. With TeLeMaCo, a central site exists that allows registering teaching material on the use of tools, technologies and resources from CLARIN-D. Sharing this material allows the reuse of high quality teaching material and tutorials for those working on providing their own tools and services or using the ones available in CLARIN-D.

14 Summary

In this time period, CLARIN-D made significant steps forward in all technical areas. Together with aspects such as the currently renewed certification of all nine German CLARIN centres, the foundations for a reliable research infrastructure are in place. Work has not been completed, and the real challenges lay and still lie in better integration of the existing components and improvement of the user interfaces.

Another important aspect, which was in focus of CLARIN-D’s fourth year, is organizational flexibility. Over the course of a five-year construction phase, many institutional and personal factors changed over time. While this presents challenges, the migration of several A-services, such as the necessary shift from ISOcat to CLARIN Concept Registry and the migration of the AAI services to computing centres, can serve as examples of adapting to change. Due to distributed centre architecture, CLARIN was able to adapt with minimal impact on the running services. This demonstrates the robustness of CLARIN’s distributed setup. At the same time, the use of components such as the Centre Registry increase this robustness by allowing access to resources and service APIs in this dynamic distributed environment with high reliability. This shows the increasingly flexible nature of CLARIN’s distributed setup.